profile
Опубликовано 5 лет назад по предмету Геометрия от UmkaL

Найти расстояние от точки пересечения медиан прямоугольного треугольника до его катета, равного 12, если гипотенуза равна 15

  1. Ответ
    Ответ дан Fatter

    Обозначим треугольник АВС. АС основание. Угол  С=90. АВ=15, АС=12. Проведём медианы. Они пересекаются в точке О. Из точки О на основание АС опустим перпендикуляр ОК , это и будет искомое расстояние. Из вершины В к стороне АС проведена медиана ВМ. По теореме Пифагора ВС=корень из(АВ квадрат-АС квадрат)=корень из(225-144)=9.  Треугольники МВС и МОК подобны как прямоугольные с общим острым угломВМС. Тогда  МК/КО=МС/ВС=6/9. Отсюда МК=2/3*КО. Обозначим искомое расстояние КО=Х. Тогда МК=2/3*Х.  В треугольнике МОК квадрат гипотенузы МО равен МОквадрат=Хквадрат+(2/3*Х)квадрат=(13*Хквадрат)/9.  В треугольнике МВС ВМ=корень из(МС квадрат+ВС квадрат) =корень из(36+81)= корень из117.   Медианы делятся в точке пересечения в отношении 1/2.  Отсюда МО/ВМ=1/3.  Тогда МО квадрат=(ВМ/3)квадрат=117/9.  Приравняем полученные выражения МО квадрат, то есть 13*Хквадрат/9=117/9. Отсюда Х=3. Или искомое расстояние ОК=3.