profile
Опубликовано 4 года назад по предмету Математика от Вася Петров

Как решить такое уравнение Y'=((2x-1)/x^2)y+1

  1. Ответ
    Ответ дан Сергей Аликов
    Если речь идёт о дифференциальном уравнении y' = ((2 x - 1) / x^2) y + 1, то сначала замечаем, что оно линейно относительно y и неоднородное. Решаем однородное уравнение:
    y' - ((2 x - 1) / x^2) y = 0,
    dy/y = [(2/x) - (1/x^2) ] dx,
    ln y = 2 ln x + (1/x) + const,
    y = A x^2 e^(1/x), A - некоторая постоянная.
    Решение неоднородного уравнения ищем в виде:
    y = A(x) x^2 e^(1/x),
    A' = e^(-1/x) (1/x^2),
    dA = e^(-1/x) d(-1/x),
    A = e^(-1/x) + C,
    Общее решение:
    y = C x^2 e^(1/x) + x^2,
    Я вначале думал, что решение выше - особое, но проверка показала, что это не так.